An Index for Set-valued Maps in Infinite- Dimensional Spaces
نویسنده
چکیده
Previous fixed point indexes defined for a set-valued map in an infinite-dimensional space have required the values of this map to be convex sets. The corresponding assumption of this paper is that the values be (co-)acyclic sets, i.e., that the reduced Alexander cohomology group of each of these sets be trivial in each dimension. Other assumptions are that the space is locally convex and that the map is compact and upper semicontinuous with no fixed points on the boundary of its domain. The index is defined, proved to be homotopy invariant, and proved to vanish in case there are no fixed points. The main methods used are finite-dimensional approximation and the Vietoris-Begle mapping theorem.
منابع مشابه
Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces
This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملOptimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone
In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.
متن کاملOptimality Conditions for Vector Optimisation with Set-valued Maps
In recent years, vector optimisation with set-valued maps in infinite dimensional spaces has been received an increasing amount of attention. See [6, 2, 5, 8, 4, 9] and references therein, for its extensive applications in many fields such as mathematical programming, optimal control, management science. Vector optimisation with setvalued maps, sometimes called set-valued vector optimisation fo...
متن کاملEntropy of a semigroup of maps from a set-valued view
In this paper, we introduce a new entropy-like invariant, named Hausdorff metric entropy, for finitely generated semigroups acting on compact metric spaces from a set-valued view and study its properties. We establish the relation between Hausdorff metric entropy and topological entropy of a semigroup defined by Bis. Some examples with positive or zero Hausdorff metric entropy are given. Moreov...
متن کامل